Prenatal Monitoring Strategies for Lower-risk RBC Alloantibodies Matthew Yan MD FRCPC DRCPSC MSc Medical Officer, Canadian Blood Services TM Physician, Fraser Health Authority matthew.yan@blood.ca May 25, 2022 # **Faculty Disclosure** In compliance with CPD policy, Temerty Faculty of Medicine requires the following disclosures to the session audience This program has received no financial external support I have no potential conflicts of interest relevant to this talk # Objectives - Discuss a plan to follow patients with alloantibodies less likely to cause HDN (e.g., M, N, Colton B, autoantibodies, inconclusive) - Discuss suggestions for titration frequency for these antibodies - Discuss titration and frequency if the antibody titer has been critical in a prior pregnancy, but the fetus was not affected by HDFN - Review special laboratory techniques that might assist in assessment of clinical significance (e.g., DTT treatment of plasma) # Role of Serologic Monitoring Serologically performed via titration to measure antibody strength and screen for pregnancies that require further non-serologic monitoring to assess for anemia (e.g., potential need for IUT) - E.g., Identify cases where **fetus** is at risk (+/- neonate) - Titre does not correlate well with HDFN severity Some antibodies rarely or never require intrauterine intervention – but may cause mild HDN - Due to antibody characteristics and timing of fetal expression - Differing opinions on whether frequent serial titration is necessary in these cases ## Case ### 32 year old South Asian female G2P1 ## Initial group & screen (12 weeks GA) - O positive - Newly identified anti-M in solid phase; titre 16 - No antibodies detected during 1st pregnancy # Defining Risk - 1. What is the partner's antigen phenotype / zygosity? - (i.e., could the fetus express the cognate antigen) - 2. What is the antibody specificity? Is it known to cause HDFN and/or require antenatal fetal intervention? Most cases of fetal anemia are related to anti-D, -K or antibodies in combination with anti-D or -K. - Few cases related to anti-E or -c. - Very rare for lower risk non-Rh and non-K antibodies ## Canadian Data CBS Edmonton (2006-2010) 552 prenatal antibody cases 93 Jk/Fy (16.8%) antibodies | Table 4. Critical titres by antibody | | | | | |--------------------------------------|-----------------------|--------------------------|--|--| | Antibody | Severe fetal outcome* | Severe neonatal outcome* | | | | Anti-D | 64 | 8 | | | | Anti-C | — † | 64 | | | | Anti-c | _ | 128 | | | | Anti-E | 16 | 16 | | | | Anti-e | | | | | | Anti-Fy ^a | 16 | 32 | | | | Anti-Fy ^ь | _ | _ | | | | Anti-Jk ^a | _ | _ | | | | Anti-Jk⁵ | _ | _ | | | Severe fetal outcome indicated by IUT, maternal plasmapheresis or IVIg, intrauterine fetal death due to HDFN or delivery ≤ 32 weeks due to HDFN ## Canadian Data ### MSH (1991 – 2014) 246 IUT cases | Variable | Mean/n (%) | | |------------------|------------|--| | Primary antibody | + + | | | D | 188 (81.0) | | | Kell | 32 (13.8) | | | Other | 12 (5.2) | | Snelgrove et al. Fetal Diagn Ther 2019;46:425-432 ### SBK (2010 – 2017) 128 alloimmunized pregnancies | | Cognate antigen positive Single antibody | | | | |---|---|----------|----------------------|--------------------| | | | | | | | | D | K | Other Rh
antibody | Other alloantibody | | Mothers: (N, % 128 mothers) | 16 (13) | 2 (2) | 25 (20) | 11 (9) | | Routine bloodwork only (n, %) | 1 (6) | 0 (0) | 3 (12) | 3 (27) | | # Mothers with titration testing performed (n, %) | 14 (88) | 2 (100) | 21 (84) | 10 (91) | | # Of titers/pregnancy (mean) ^b | 1.4 | 0 | 3.0 | 1.2 | | Titer strength (median, IQR) ^b | 128 (16-512) | N/A | 32 (8-64) | 16 (4-32) | | Maximum titer >32 (n, %) ^b | 13 (93) | 0 | 11 (52) | 2 (20) | | Mothers with ultrasound (non-doppler) performed during pregnancy (n, %) | 0 | 1 (50) | 8 (32) | 0 | | Mothers with Doppler ultrasound performed during pregnancy (n, %) | 14 (88) | 1 (50) | 14 (56) | 8 (73) | | No. of Dopplers/patient (median, IQR) ^c | 6 (3-13) | 7 (0-13) | 2 (0-6) | 1 (0-6) | | Abnormal MCA Doppler ultrasound $(n, \%)^c$ | 1 (7) | 1 (100) | 3 (21) | 0 | | Intrauterine transfusion, (n, %) | 0 | 0 | 0 | 0 | Lieberman et al. Transfusion 2020;60:2537-2546 ## International Data | Country | Cases | Result | |---|--|---| | Netherlands
Koelewijin. Transfusion
2008;48:941 | 1279 pregnancies with non-D Ab capable of causing HDFN → 567 at risk based on partner pheno | No "at risk" patients (n=155) with non-Rh or
non-K antibodies required IUT or resulted in
stillbirth | | Ireland
Walsh. Eur J Obstet Gyn
2013;171:235 | 102 pregnancies requiring 242 IUT from 1996 to 2011 | No non-Rh or non-K antibodies implicated | | USA
Smith. Immunohematology
2013;29:127 | 264 pregnancies with Ab from 2007-2011 | No non-Rh or non-K antibodies (n=37) required IUT* or resulted in stillbirth *2 IUTs included Anti-D in combination with S or Jkb Anti-M second most common Ab | | UK
Awowole. Eur J Obstet
Gyn 2019;237:89 | 398 pregnancies with Ab from 2011-2016
29 IUTs | No non-Rh or non-K antibodies (n=190) required IUT or resulted in stillbirth Anti-M second most common Ab | | China
Li. BMC Preg and Child
2020;20:539 | 268 pregnancies with Ab from 2005-2019 → 92 IUTs | 9 cases of fetal anemia (causing death or requiring IUT) → 7 anti-M, 2 -Mur | | Sweden
Liu. Acta Obs Gyn Scand
2021;100:2216 | 1079 pregnancies at risk for HDFN from 1990-
2016; 87 IUTs
→ 204 low risk Abs (excludes Rh, K, Fya, U) | Low risk: 1 case of IUT in anti-M; no stillbirths Moderate-risk included IUT in anti-Fya (1), -U (1) | **SUMMARY** Overall, lower risk antibodies are unlikely to cause fetal anemia Rare exceptions do occur risk of anti-M may be depend on race/ethnicity ## Anti-M Anti-M rarely causes clinically significant HDFN and likely requires less follow-up if initial titres are low #### North America / Netherlands: ~800 cases of anti-M without clinically significant HDFN #### Stetson et. al. algorithm: - Critical titre of 64 (32 for all non-M abs) - If initial titre ≥ 16 → q 4 weeks titres - If initial titre < 16 → repeat at 28 weeks - Check for rapid rise in titre (≥ 32) #### **Netherlands** - Previously retested anti-M IgM at 24, 30 & 36 weeks for IgG conversion - IgG conversion never observed Anti-M can cause severe HDFN and may need to be followed closely in specific populations - > 110 published cases of severe HDFN: - 104 cases from Asia (China 59, Japan 36) - 11 other cases from non-Asian countries - 21 antenatal intervention (IUT, PLEX, Ig) - > 9 fetal deaths - Most IgG titres ≥ 32; lower titres of 1-16 also observed Hypothesis: higher frequency of anti-M IgG in Asian populations (up to 80%), although most of the North American cases likely also contained IgG Yasuda et al. Trans Med Rev 2013; 1 Stetson et al. Am J Perinatol Rep 2017;7:e205 de Haas et al. Vox Sang 2015;109:99 Yasuda et al. Trans Med Rev 2013; 1 Li et al. Transfusion 2019;59:385 Li et al. Transfusion 2021;61:1908 ## Anti-M ## Suggestions of an IgG component include: - Reactivity at 37C in IAT with monospecific IgG AHG - Reactivity at RT does not rule out IgG, as many anti-M are present in combination IgG + IgM - Reactivity in solid-phase # Confirmation of an IgG component +/- IgG titres via thiol reagents: - Dithiothreitol (DTT) - 2-Mercaptoethanol (2-ME) ## Other Antibodies ### Autoantibodies (~0.1%) - Increase autoantibody production during pregnancy - Two studies (n=142) demonstrated no harm to the pregnant patient or fetus for *pregnancy-induced* autoantibodies ### Inconclusive / non-specific - Depends on method (increased with solid phase: up to 1-2%) - One study (n=88) did not identify clinical significance - 8.5% showed specificity on subsequent testing; 49% self-resolved - BEST SRUS study underway Surucu et al. Transfsus Med Hemo 2015;42:325 Hoppe et al. Transfusion 2001;41:1559 Van Winden et al. J Matern Fetal Neonatal Med 2016;29:2848 ## Back to the Case Partner phenotyped as M+N- \rightarrow 100% chance fetus will express the M antigen. DTT treatment confirms an anti-M IgG titre of 8, which is below our lab-defined critical threshold. Repeat sample requested in 4 weeks. # What is Optimal? What is the optimal frequency of antenatal titration for lower risk RBC antibodies? Several international guidelines exist \rightarrow level of evidence is low, but collectively may help to inform ### Optimal strategy may depend on: - Antibody factors (e.g., specificity, IgG vs IgM, initial titre, etc.) - Patient factors (e.g., race/ethnicity) - Clinician factors (e.g., avoiding overly complex sampling schedules) # International Recommendations | Country | Lower Risk Definition | Monitoring Strategy
for Lower Risk | |---|--|--| | AABB (USA)
2005 | Non-Rh antibodies | No recommended frequencies or critical titres due to limited evidence. Suggest differentiating anti-M (IgG vs. IgM). | | ANZSBT
(Australia & NZ)
²⁰⁰⁷ | Cw, Fyb, Jk, S, s, M,
Ge
High: Rh, K, Fya | No recommended frequencies or critical titres due to limited evidence. | | RCOG / BSCH
(UK)
²⁰¹⁶ | Not anti-D, -K or -c *Rare cases of HFN in E, C, k, Fya, Jka, M, H | First trimester screen with follow-up screen at 28 weeks; critical titre of 32 | | Sweden
2015 | Cw, f, Jk, M, Ss, Fyb,
Lu, Kp, Yta, Co, Ge2,3
High/moderate: Rh, K/k, Fya, U | Titration every 8 weeks Critical titre same as other antibodies | | ACOG (USA)
2018 | N/A | Similar titration frequency (q 2-4 wks) as D
Critical titre same as other Abs (8-32) | # **Canadian Context** Practice varies across Canada (COPTN survey 2018): # **Balancing Act** ### Recheck at 28 weeks - Reduced cost (lab, result follow up etc.) - Reduced phlebotomy - Risk of missing antibody requiring early or late antenatal intervention ### Mimic high-risk (q 2-4 wk) - Increased cost - Increased phlebotomy - Unlikely to miss a lowerrisk antibody requiring antenatal intervention Reduced frequency Increased frequency # **Balancing Act** #### Recheck at 28 weeks - Reduced cost (lab, result follow up etc.) - Reduced phlebotomy - Risk of missing antibody requiring early or late antenatal intervention Reduced frequency ### Mimic high-risk (q 2-4 wk) - Increased cost - Increased phlebotomy - Unlikely to miss a lowerrisk antibody requiring antenatal intervention ### **Alternative Monitoring** - > q 4 wk or antibody/titre-specific - Contain at minimum one extra early & late GA titration (vs. 28 week only) - Possibly differentiate between high vs. low-risk for non-Rh/K antibodies - Complex algorithm may cause confusion or error Increased frequency ## **Critical Titre** Once critical titre (or 2 tube increase) is reached \rightarrow fetal anemia assessment via Doppler monitoring should occur ### **Titre Caveats:** - Role of continued titration once Doppler monitoring has commenced has not been described or recommended - Titrations have been shown to be unreliable if a past pregnancy has been affected by HDFN - There is limited evidence if the same is true for low-risk antibodies that previously reached critical titre without HDFN - Guidelines remain silent ## Back to the Case The patient had serial anti-M IgG titrations performed with titres fluctuating between 4 and 8. The patient delivered a healthy neonate with no evidence of HDFN. - Neonate was M+N+ - DAT negative A repeat CBC performed 4 weeks later did not identify any late onset anemia. # Proposed Algorithm