

3

Fetal maternal hemorrhage testing: the why, how & when

Heather VanderMeulen, MD, MSc, FRCPC

Transfusion Medicine Fellow Canadian Blood Services

Faculty Disclosure

In compliance with CPD policy, Temerty Faculty of Medicine requires the following disclosures to the session audience

This program has received no financial external support

Heather VanderMeulen has no relevant conflicts of interest to disclose

Objectives

1. WHY:

Understand why to use FMH testing for RhD neg and RhD pos patients

2. **HOW**:

Appreciate 3 key methods of FMH testing, their value and limitations

3. WHEN:

Consider when to send for flow cytometry

WHY TEST

- 1) RhD negative mother
- 2) RhD positive (or negative) mother

FMH testing guides Rhlg dosing in RhD- patients

> 20 weeks GA

AND

Potentially sensitizing event

Feto-placental blood volume is 30 mL at 20 wks

Goal is to identify fetal bleed >30 mL that needs EXTRA Rhlg

BCSH Guidelines 2014
AABB Technical Manual
SOGC Guidelines: Prevention of Rh Alloimmunization 2018

Fetal-Placental Volume vs. Gestational Age

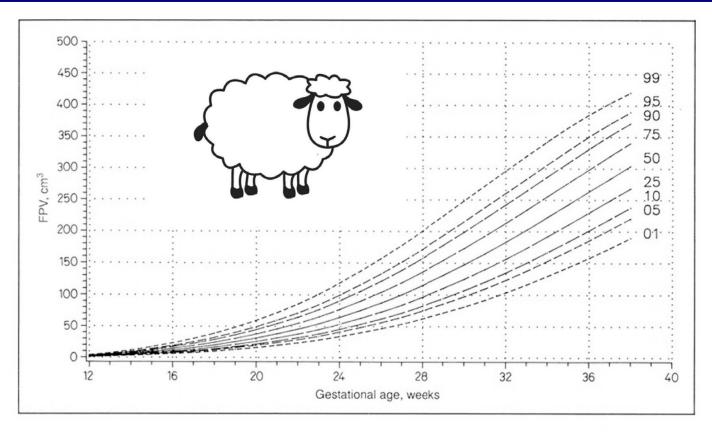
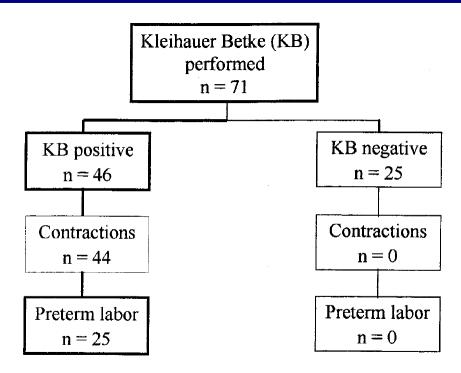


Fig. 3. FPV versus gestational age; 99th to 1st percentiles obtained using exponential model derived from the data of Brenner et al. [11].

WHY TEST

- 1) RhD negative mother
- 2) RhD positive (or negative) mother

Fetal demise


- Prospective cohort study of 1025 fetal deaths ≥20 weeks GA
 - FMH contributed in 10.6%
- SOGC 2020 Guideline for Stillbirth Investigation: consider KB testing

Korteweg, F. J., et al. (2012). Evaluation of 1025 fetal deaths: proposed diagnostic workup. American Journal of Obstetrics and Gynecology, 206(1), 53.e1-53.e12.

Guideline No. 394-Stillbirth Investigation, SOGC Clinical Practice Guideline, January 2020

Maternal trauma

Fig. 1. Distribution of women.

+ KB test: LR 20.8 for preterm labor (p < 0.001)

Muench et al., J Trauma, 2004

Maternal trauma

- 98 low-risk 2nd trimester pregnant women
 - → 5.8% positive KB

- 151 pregnant trauma patients
 - → 2.6% positive KB

• P=0.31

Fetal outcomes in FMH

Diagnostic accuracy of Kleihauer–Betke (Kb) testing to predict fetal outcomes associated with fetomaternal hemorrhage: a retrospective cohort study

Melanie C. Audette 1,2 Katie Mclean, Niyati Malkani, John Kingdom, and

- 662 women with fall/abdominal traumale (3%) KB positive
- 1° composite outcome (prete

NICU admission, IUFD, neonà

\$41 (97%) KB negative vs. 22

A delivery, fetal anemia requiring transfusion,

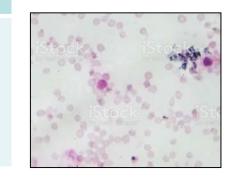
No difference in 1° composite ou ne between KB negative and KB positive (30% vs. 36%, p=0.54)

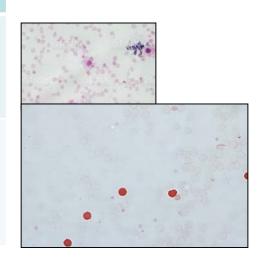
Journal of Perinatology, 2022

SOGC Guidelines for the Management of a Pregnant Trauma Patient (2015)

Though electronic fetal monitoring is more likely to be clinically useful in rhesus-positive women, KB test can be considered as an optional test to determine the need for prolonged monitoring.

HOW TO TEST


Selecting the right tool for the job.


How do we detect FMH?

Test	Mechanism	Outcome	Limitations	Turnaround
Rosette	 Incubate maternal whole blood & anti-D →D+ fetal cells bound Enzyme indicator cells added and bind to anti-D-bound cells → "Rosetting" 	Qualitative	 Mother must be D- (false + if weak D) Fetus must be D+ (false - if weak D) False + if DAT+ 	• 1-2 hours

How do we detect FMH?

Test	Mechanism	Outcome	Limitations	Turnaround
Rosette	 Incubate maternal whole blood & anti-D →D+ fetal cells bound Enzyme indicator cells added and bind to anti-D-bound cells → "Rosetting" 	Qualitative	 Mother must be D- (false + if weak D) Fetus must be D+ (false - if weak D) False + if DAT+ 	• 1-2 hours
Kleihauer -Betke	 HbF is resistant to acidic denaturation unlike HbA Fetal RBCs remain intact, adult RBCs turn to "ghosts" 2000 cells counted 	Qualitative vs. Quantitative	 ↑ HbF can give false + Inter-user variability 	• 2 hours

KB test limitations: Inter-user variability

Imprecision:

- 2000 cells counted
 - COV 50%
- 10 000 cells counted
 - COV 18%
- Anti-HbF flow cytometry (50 000+ cells counted)
 - COV <2%

CAP Surveys:

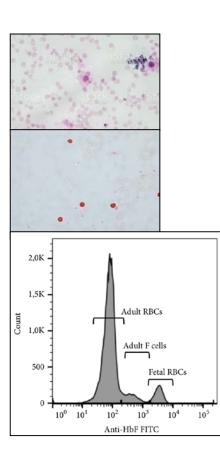
- KB COV 32-80%
- FC COV <20%
- 10% of labs using KB reported a 40 mL bleed <30 mL vs. none of labs using FC
- 50% of labs using KB reported a 20 mL bleed as >30 mL vs. none of labs using FC

AABB Technical Manual: count 2000 cells

Variables Contributing to Over- or Underestimation of FMH by the KB Test

Factors leading to overestimation	Factors leading to underestimation
Presence of F cells (1/4 pregnant patients in 2 nd tri, HPFH, SCD, thalassemia)	Failure to adjust for ↑ maternal circulating volume (if >70 kg)
Ghost cells may be difficult to identify	Incomplete staining of fetal cells (only 90% stain dark pink)

Variables Contributing to Over- or Underestimation of FMH by the KB Test

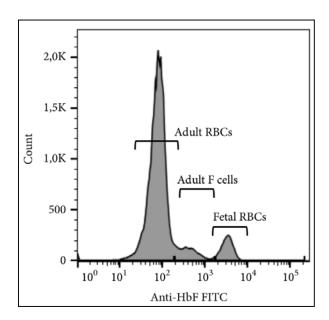

Factors leading to overestimation	Factors leading to underestimation
Presence of F cells (1/4 pregnant patients in 2 nd tri, HPFH, SCD, thalassemia)	Failure to adjust for ↑ maternal circulating volume (if >70 kg)
Ghost cells may be difficult to identify	Incomplete staining of fetal cells (only 90% stain dark pink)

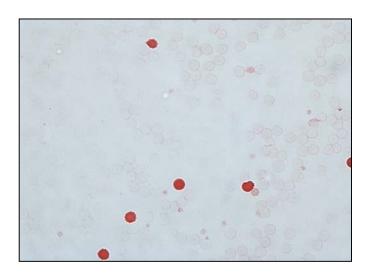
Variables Contributing to Over- or Underestimation of FMH by the KB Test

Factors leading to overestimation	Factors leading to underestimation
Presence of F cells (1/4 pregnant patients in 2 nd tri, HPFH, SCD, thalassemia)	Failure to adjust for ↑ maternal circulating volume (if >70 kg)
Ghost cells may be difficult to identify	Incomplete staining of fetal cells (only 90% stain dark pink)

How do we detect FMH?

Test	Mechanism	Outcome	Limitations	Turnaround
Rosette	 Incubate maternal whole blood & anti-D →D+ fetal cells bound Enzyme indicator cells added and bind to anti-D-bound cells → "Rosetting" 	Qualitative	 Mother must be D- Fetus must be D+ (false - if weak D) 	• 1-2 hours
Kleihauer-Betke	 HbF is resistant to acidic denaturation unlike HbA Fetal RBCs remain intact, adult RBCs turn to "ghosts" 2000 cells counted 	Qualitative vs. Quantitative	 ↑ HbF can give false + • Inter-user variability 	• 2 hours
Flow cytometry	 Monoclonal antibodies targeted vs. HbF 	Quantitative (most accurate, precise, sensitive & specific)	ExpensiveAvailabilityValidation for FMH	Centre- specific


WHEN TO GO WITH THE FLOW


When to "go with the flow"

1.↑ maternal hemoglobin F:

persistence of fetal hemoglobin, sickle cell, β thalassemia

Flow distinguishes maternal F cells vs. fetal cells

KB does not distinguish maternal F cells vs. fetal cells

ora 🛕

When to "go with the flow"

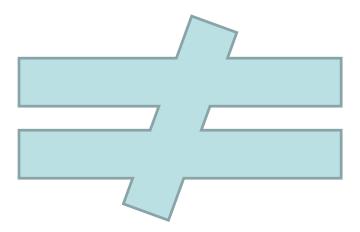
2. Assessment of +KB:

- KB can both overestimate (more commonly) or underestimate FMH
- 19% of large bleeds (>10 mL) received inadequate RhIg due to KB readings
- Sensitivity of KB for FMH >30 mL by flow cytometry:

KB result cut-off	Sensitivity	Specificity	Accuracy
10 mL	92% (22/24)*	81% (271/334)	82%
20 mL	92% (22/24)*	91% (304/334)	91%
30 mL	87% (21/24)	93% (331/334)	93%

^{*} Sensitivity excluding 2 adult HbF cases: 100%

Most important to send for flow if KB shows large bleed (>10 mL)


Lafferty et al., 2003; Nance et al., 1988; Kim & Makar, AJH 2012; Abstract: Dube et al., AABB 2020

When to "go with the flow"

3. Discrepancy between KB and fetal status

- Distinguish F cells (↑ in ¼ pregnant women in 2nd tri) vs. fetal cells
- A fetus with large FMH will not look "well"

Conclusions

WHY:

- RhD negative mother: identify the need for extra RhIg
- RhD negative or positive mother: fetal demise ?maternal trauma

HOW:

- Rosette: Fast, available, inexpensive, attention to maternal/fetal D expression
- KB: High inter-user variability, large bleeds may be underdosed with RhIg, caution with hemoglobinopathies
- Flow cytometry: Most sensitive, precise, sens & spec. but limited availability/slow turnaround time /\$\$\$

WHEN to use flow:

- High maternal HbF
- +KB → especially if large bleed suspected
- Discrepancy between KB and baby

