Standard Lab Test Targets

Michelle Sholzberg MDCM, MSc, FRCPC

Departments of Medicine and Laboratory Medicine & Pathobiology
Institute of Health Policy, Management and Evaluation
St. Michael's Hospital
University of Toronto

HEMATOLOGY-ONCOLOGY

St. Michael's
Inspired Care. Inspiring Science.

Disclaimer

No relevant financial conflicts of interest

Objectives

- Brief review of hemostasis
- Brief review of acute coagulopathy of trauma
- Review of testing limitations for standard lab tests
- Review lab triggers for transfusion of RBCs and components in setting of MH

Updated Coagulation Cascade

Hemostasis Simplified

Trauma to the endothelium = TRIGGER

-Platelets 1st on the scene

-VWF glues platelets to the endothelium

Coagulation factors assemble to make a clot Additional factors stabilize clot

Fibrinolytic system breaks down clot

Coagulation is Localized to the Cellular Surface

- Occurs on membranes with <u>exposed</u> phospholipids
 - Phosphatidyl serine
 - Phosphatidyl ethanolamine
- Exposed phospholipids are not found on resting cells

Hoffman, M. & Monroe, D.M. *Thrombosis and haemostasis* **85**, 958-965 (2001).

Coagulopathy of Trauma Simplified

BLEEDING

-Trauma
-Diffuse
endothelial
damage

-Inflammation

-Shock

-Platelet consumption & dysfunction

-Coagulation
consumption
-AutoHeparinization
-Upregulated
Thrombomodulin
→ Activation of
protein C

-Diminished Stabilization

-Uncontrolled tPA

-Hyperfibrinolysis

Acute Coagulopathy of Trauma is **Bad**

Retrospective cohort study of 1088 trauma patients

- Coagulopathy defined as: PT>18 s, aPTT>60 s, or TT>15 s
 - 24% met this definition on arrival before resuscitation
 - 46% mortality rate with coagulopathy vs. 11% mortality rate without (p<0.001)

Retrospective cohort study of 3646 trauma patients

- Those with a prothrombin time ratio (PTr) > 1.2 had higher mortality and transfusion requirements than patients with a normal PTr
 - Mortality: 22.7% vs. 7.0% (p< 0.001)
 - Packed red blood cells: 3.5 vs. 1.2 units (p< 0.001)

What is the role of the Hematology (Routine & Coagulation) Lab in a MHP?

- For effective management, it is necessary to understand why the patient is currently bleeding
- Is the bleeding coagulopathic or surgical in nature?
- If the patient has coagulopathic bleeding is this due to:
 - Platelet deficiency or dysfunction?
 - Reduced thrombin generation?
 - Clot instability?
 - Hyperfibrinolysis?
 - Acidosis?
 - Hypothermia?

The Ideal Coagulation Laboratory Test

- The ideal laboratory test in the face of a MH would provide an accurate, reliable and rapid assessment of the patient's in vivo hemostatic capacity
- The ability of our contemporary coagulation tests to comply with these requirements must be questioned
- Important to understand what a test was originally designed to measure and what it has been validated to measure

Categories of Lab Tests

 Two broad categories of laboratory tests that are useful in the assessment of massive hemorrhage

1. Static assays

1. Dynamic assays

Static Assays

- Complete blood cell count (CBC)
- Prothrombin time (PT)
- Activated partial thromboplastin time (aPTT)
- Fibrinogen
- Thrombin time (TT)

Basic Clot Based Tests

- Prothrombin Time (PT)
 - International Normalized Ratio (INR)
- Activated Partial Thromboplastin Time (PTT)
- END RESULT = CLOT FORMATION

Throw out the Cell-Based Model!

- The PTT and PT measure the <u>time to clot formation</u> of the sample in a test tube in the presence of their respective clot-driving reagents
 - assess only a small component (<5%) of thrombin generation
- Both tests are automated and run on platelet poor patient plasma
- PPP acts as the in vitro representation of the patient's hemostatic capacity
- Therefore, there is a mechanistic disconnect between in vivo and in vitro hemostasis even prior to placement of the sample on the analyzer

What is the principle of Clot-Based Assays?

Hemostasis Simplified: Static Assays

Trauma to the endothelium = TRIGGER

-Platelets 1st on the scene -VWF glues platelets to the

endothelium

Coagulation factors assemble to make a clot Additional factors stabilize clot

Fibrinolytic system breaks down clot

CBC

PTT
PT/INR
Fibrinogen

Origin & Evidence Static Assays in setting of MH

• PT/INR

- Effective at determining the amount of warfarin that is present in steady state
- Was not designed to be a dynamic measure of the hemostatic system

- INR>1.2 = BAD

aPTT

Initially design

Attuned to me

May detect les

• <u>TT</u>

Nothing publis

• <u>Fibrinogen</u>

No quality sture
 fibrinogen detection method in setting of MH

stency of the Clauss

- Decreased fibrinogen on arrival at the ED = independent predictor of MT requirement and death in severely injured patients
- Critically low threshold has not been well-established in trauma (?1, ?1.5, ?2)

Chee Y et al. BJH 2008; Kitchens C. JTH 2005; Levy JH et al. Clinics in laboratory medicine 2014; Dzik WH et al. Crit Care, 2011;15(6):242; Hayakawa M et al. Semin Thromb Hemost. 2015; Schochl H et al. Crit Care.2011; Inaba K et al. J Am Coll Surg. 2013.

Based on the Evidence: Static Assays in setting of MH

- Fluctuations in the levels of the static studies may not correlate with in vivo bleeding diatheses
- Their proper interpretation is relatively <u>unknown</u>
- Their employment is entirely extrapolated from their use in other much more stable clinical environments
- Clot based assays are run on platelet poor plasma,
 which abrogates the setting of <u>in vivo</u> hemostasis
- There is a fixed delay in the performance of the tests that further negatively affect their clinical relevance in the acute setting

Toulon, P., et al. Thrombosis and haemostasis 101, 394-401 (2009). Dzik WH et al. Crit Care, 15(6):242 (2011).

The CBC

Hemoglobin

- Low hemoglobin is an <u>indicator of severe bleeding associated with coagulopathy</u>
- Acute anemia may have a negative effect on hemostasis rheology
 - Possibly less platelet margination, activation, support of thrombin generation
- RCTs that have evaluated Hb thresholds for transfusion in critically ill patients have consistently found that restrictive strategies (Hb 70-90) are as safe or safer than liberal strategies (Hb>90)
 - Not studied in MH patients

Platelet count

- No assessment of platelet function
- Maintaining a platelet count >50-100 seems important to minimize risk of microvascular and diffuse bleeding in a variety of settings
- Up front administration of platelets in patients who are not yet thrombocytopenic is controversial
- The association between lower platelet counts and mortality applies to platelet counts within the normal range
- Platelet count alone is a weak indicator of platelet transfusion need bc it ignores platelet function

Conclusions: Static Assays in setting of MH

- Paucity of good quality evidence supporting transfusion targets in the setting of MH
 - BUT coagulopathy IS associated with BAD things (INR>1.2, fibrinogen <2)
- A few practical conclusions can be drawn:
- 1. We cannot rely on a single test result test early and hourly
 - A trend may be more clinically meaningful as this controls for the inherent variability
- 2. A normal initial coagulation screen indicates that there is no major coagulation factor defect and possibly/probably no inhibiting anticoagulant present
 - Small glimpse of thrombin generation; do not be fooled
- 3. Decisions should be based on the clinical picture
 - Acute events are likely to unfold prior to the achievement of test results
 - But that doesn't mean that you shouldn't order tests to help guide the direction of care

Is there anything that we can do to make the Static Assays Better?

- Speed is critical in the case of MH
- Slow testing may be of no clinical benefit if the result arrives too late
- Accuracy is important, however the focus should be on accuracy sufficient to make clinical decisions within the shortest possible time frame

Pre-analytical Phase

Analytical Phase

Post-Analytical Phase

Lab Panels Education

 TM MLTs to inform Heme MLTs that MHP initiated → overhead announcement in lab

Prioritization

 Sample hand-delivered to lab

Rapid centrifugation

• Centrifuge setup to spin PPP in 5 (vs. 15) min

Run time

- PT/INR = 3 min
- aPTT = 5 min
- Fibinrogen = 4 min
- All 3 tests = 6½ min

Fibrinogen reagent on board

- Switch to larger volume bottle (2mL to 5mL)
- Auto-reflex to low fib calibration curve is <=1.5 g/L (+4 min) → verbal prelim

Rapid reporting

- Setup auto-verification rules
 - abN results
 - LIS → EMR
 - Clarify who will accept critical results

GOLD STANDARD:

At Chandler's institution, to address the issue of speed, an emergency hemorrhage panel (EHP) was constructed

- Reporting results within 10-20 minutes
- Median TAT of 88 mins in large prospective study

Chandler, W.L et al. *Transfusion* **50**, 2547-2552 (2010).
Toulon, P., et al. *Thrombosis and Haemostasis* 101, 394-401 (2009).

Take Home: Targets Simplified

Objectives Revisited

- Brief review of hemostasis
- Brief review of acute coagulopathy of trauma
- Review of testing limitations for standard lab tests
- Review lab triggers for transfusion of RBCs and components in setting of MH

Thank you Questions?

sholzbergm@smh.ca

Twitter: @sholzberg

St. Michael's
Inspired Care. Inspiring Science.

