A New Beginning: Stem Cell Transplant Challenges

Dr. Wendy Lau
Director, Transfusion Medicine,
The Hospital for Sick Children
April 8, 2016
Objectives

1. Outline cellular therapy products and transfusion support for pediatric bone marrow / stem cell transplants

2. Describe the indications for the use of irradiated and CMV seronegative blood components
Stem cell source

• Bone marrow
• Peripheral blood stem cells
• Cord blood

• Sick Kids
 – About 100 transplants a year
 – Half autologous
 – Half allogeneic
 • 2 thirds are bone marrow (preferred for pediatric patients, less GVHD)
 • 1 third are peripheral blood stem cells and cords
Infusing bone marrow is like transfusing whole blood

- BM donors are selected by HLA type, not blood group.
- 40-50% of transplants are ABO incompatible.
- 3 types of incompatibility
 1. Major mismatch: 20-25%
 2. Minor mismatch: 20-25%
 3. Both major and minor mismatch (bidirectional): 5%
Major ABO incompatibility

- Donor red cells incompatible with recipient’s iso- hemagglutinins (anti-A, anti-B)
 - Donor A, B, or AB, Patient O
 - Donor AB, Patient A or B

*These are approximate frequencies.
Major ABO incompatibility

• Potential adverse consequences
 – Immediate hemolysis
 – Delayed RBC engraftment
 – Pure red cell aplasia (residual recipient lymphocytes)

• Interventions
 – Plasmapheresis of recipient
 • Not routine in US or Canadian centres
 • Several centres in Europe still do routinely or based on recipient isoagglutinin titres
 – Red cell reduction
 • Manual method: Starch sedimentation
 • Newer automated devices
Major ABO incompatibility
Adult patients

• Maximum volume of major mismatched RBCs not clearly defined
 – Maximum allowable RBC volume differs between institutions (usually 10 to 40 mL)
 – Majority 20 to 30 mL or 0.2 to 0.4 mL/kg

Major ABO incompatible BMT in children: determining what residual volume of donor red cells can safely be infused following red cell depletion

K Patrick1, W Leu2, A Gassas1, E McDougall2, J Doyle3, M Ali1, J Krueger1, S Courtney1, C Armstrong1, RM Egeler1 and T Schechter1

Major ABO incompatible BM transplantation carries a risk of acute haemolysis. Red cell depletion reduces this risk but not all incompatible RBC (iRBCs) are removed and in children the residual volume can be significant relative to body weight. We sought to determine the volume of iRBCs that can be safely given to children. All patients receiving fresh BM from a donor with a major ABO blood group mismatch between January 2000 and July 2013 at the Hospital for Sick Children, Toronto, were included. Seventy-eight patients were identified. The median volume of iRBCs transfused was 1.6 mL/kg (range 0.1–10.6 mL/kg). Thirty-five patients had minor haemolytic events and five patients had clinically significant adverse events. Two patients, who received 3.66 and 3.9 mL iRBCs/kg, developed renal impairment and in one case hypoxia and hyperbilirubinaemia. One patient had mild hypotension that resolved with i.v. fluid. Two patients developed hypotension secondary to sepsis and unrelated to BM infusion. Although signs of haemolysis occur, with appropriate hydration and monitoring of renal function, clinically significant adverse events related to the infusion of ABO incompatible BM are rare, and, in this study, were only seen in patients receiving >3 mL/kg of iRBCs per kg.

Bone Marrow Transplantation (2015) 50, 536–539; doi:10.1038/bmt.2014.309; published online 26 January 2015

78 patients
Mean iRBCs 1.6 mL/kg (0.11 to 10.61 mL/kg)
30 patients (38%) minor hemolytic events
2 patients, 3.66 mL/kg, 3.9 mL/kg, significant events
Minor ABO incompatibility

• Donor isohemagglutinins (anti-A, anti-B) against antigens on recipient red cells
 – Patient A, B, or AB, Donor O
 – Patient AB, Donor A or B
• Potential adverse consequences
 – Immediate hemolysis from passive antibodies
 – Delayed hemolysis due to the “passenger lymphocyte syndrome” (between days 5 and 15 posttransplant, from viable B lymphocytes in HPC product)
 • Most develop positive DAT, but only 10 to 15% DAT-positive recipients develop hemolysis, most are mild
• Plasma reduction: centrifugation
Transfusion Support for Major ABO incompatible BMT

<table>
<thead>
<tr>
<th>Patient</th>
<th>Donor</th>
<th>RBCs</th>
<th>Plasma</th>
<th>Platelets</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>A</td>
<td>O</td>
<td>A</td>
<td>A, AB, B</td>
</tr>
<tr>
<td>O</td>
<td>B</td>
<td>O</td>
<td>B</td>
<td>B, AB, A</td>
</tr>
<tr>
<td>O</td>
<td>AB</td>
<td>O</td>
<td>AB</td>
<td>AB, A, B</td>
</tr>
<tr>
<td>A</td>
<td>AB</td>
<td>A</td>
<td>AB</td>
<td>AB, A, B</td>
</tr>
<tr>
<td>B</td>
<td>AB</td>
<td>B</td>
<td>AB</td>
<td>AB, B, A</td>
</tr>
</tbody>
</table>
Transfusion Support for Minor ABO incompatible BMT

<table>
<thead>
<tr>
<th>Patient</th>
<th>Donor</th>
<th>RBCs</th>
<th>Plasma</th>
<th>Platelets</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>O</td>
<td>O</td>
<td>A</td>
<td>A, AB, B</td>
</tr>
<tr>
<td>B</td>
<td>O</td>
<td>O</td>
<td>B</td>
<td>B, AB, A</td>
</tr>
<tr>
<td>AB</td>
<td>O</td>
<td>O</td>
<td>AB</td>
<td>AB, A, B</td>
</tr>
<tr>
<td>AB</td>
<td>A</td>
<td>A</td>
<td>AB</td>
<td>AB, A, B</td>
</tr>
<tr>
<td>AB</td>
<td>B</td>
<td>B</td>
<td>AB</td>
<td>AB, B, A</td>
</tr>
</tbody>
</table>
Transfusion Support for Bidirectional ABO incompatible BMT

<table>
<thead>
<tr>
<th>Patient</th>
<th>Donor</th>
<th>RBCs</th>
<th>Plasma</th>
<th>Platelets</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>O</td>
<td>AB</td>
<td>AB, B, A</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>O</td>
<td>AB</td>
<td>AB, A, B</td>
</tr>
</tbody>
</table>

In all cases, Group O platelets may be given if titre of anti-A / anti-B low or plasma-reduced.
BMT/Stem Cell Transplants

• Transfusion support for BMT patients: special consideration
 – Transfusion-associated Graft vs Host Disease Prevention
 – Cytomegalovirus (CMV) prevention
Transfusion Associated Graft vs Host Disease

- TA-GvHD occurs when transfused immunocompetent cells mount an immune response to recipient tissues
- Patients at risk:
 - Immuno-compromised individuals
 - Patients sharing HLA types
 - Family members
 - Fellow members of closed communities
- Directed donations: parent to child only
- Contraindicated for potential BMT patients
Irradiation to prevent TA-GVHD: Sick Kids policy

Infants under 6 months
 Most at risk: premature, received IUTs, Exchange transfusion
 Awaiting diagnosis of immune deficiency (especially in neonates with congenital heart disease)

Congenital T-cell immunodeficiencies, eg Di George, deletion 22q

All Hem/Onc patients with a malignant diagnosis on intense chemotherapy (including severe aplastic anemia)

All bone marrow transplant/stem cell transplant patients

Patients receiving or have received:
 Purine analog (e.g. fludarabine, cladribine, pentostatin)
 Alemtuzumab
 Anti-thymocyte globulin

HLA matched platelets

All directed donations
Cytomegalovirus (CMV)

- CMV can be transmitted by transfusion
- Leukoreduced blood products are comparable to anti-CMV negative blood products in preventing transfusion-transmitted CMV infection

Agree

Disagree
CMV: the Sick Kids Journey (1)

1995: Anti-CMV negative blood to
 Neonates
 BMT pre and post
 Hem/onc patients who are potential BMT recipients
 Seronegative solid organ transplant recipients getting seronegative donor organ

A comparison of filtered leukocyte-reduced and cytomegalovirus (CMV) seronegative blood products for the prevention of transfusion-associated CMV infection after marrow transplant
CMV: the Sick Kids Journey (2)

Prestorage leukoreduction in Canada
 Feb 1998-platelets, Aug 1999-red cells
CMV Consensus Conference Jan 2000 Toronto:
 CMV-seronegative pregnant women, intrauterine fetal
transfusions, and CMV-seronegative allogeneic marrow
transplant recipients.
2000-2005: meetings with neonatologists, infectious disease
specialists
2005: stopped giving anti-CMV negative blood to neonates
However, Hem/Onc and BMT were resistant to change
Transfusion-transmitted cytomegalovirus infection after
receipt of leukoreduced blood products. WG Nichols,
Blood 2003:101;4195-4200 (Fred Hutchison Cancer
Research Center, Seattle)
Chair of our Blood Transfusion Committee was also head of BMT at Sick Kids

“Practice is hard to change.”

A large allogeneic stem cell transplant program in Germany: a decade of patients undergoing allogeneic transplant with leukoreduction as the sole strategy: no patient developed transfusion-transmitted CMV

Many centers abandoned the use of anti-CMV negative blood products for transplant patients, eg. Germany, Netherlands, UK, Puget Sound Blood Center (Seattle), Harvard…
CMV: the Sick Kids Journey (4)

Sick Kids Policy since Aug 1, 2012:
anti-CMV neg blood to CMV IgG negative pre- allogeneic BMT/SCT recipients who are CMV IgG negative 2-6 weeks pre-transplant
Rounds: Hem/Onc divisional rounds, Transplant rounds Meetings
Memos, e-mails
Revised indications on order screens (electronic), order sheets (paper)
Educational rounds, residents/fellows
❖ Nursing education
The Journey is not yet over

Constant reminders
Hold outs

Hematology/Oncology: some staff physicians
Immunology: concern about SCID (Severe Combined Immunodeficiency Disease) patients
Thank you
<table>
<thead>
<tr>
<th>Patient's Group</th>
<th>Donor's Group</th>
<th>Red Cells</th>
<th>FFP</th>
<th>Cryo</th>
<th>Platelets Preferred for Transfusion</th>
<th>Other Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>A</td>
<td>O</td>
<td>A</td>
<td>Any Blood Group</td>
<td>A</td>
<td>*B, AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O concentrated SDP</td>
</tr>
<tr>
<td>O</td>
<td>B</td>
<td>O</td>
<td>B</td>
<td>Any Blood Group</td>
<td>B</td>
<td>*A, AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O concentrated SDP</td>
</tr>
<tr>
<td>O</td>
<td>AB</td>
<td>O</td>
<td>AB</td>
<td>Any Blood Group</td>
<td>AB</td>
<td>A, B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O concentrated SDP</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>O</td>
<td>AB</td>
<td>Any Blood Group</td>
<td>AB</td>
<td>*B, A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O concentrated SDP</td>
</tr>
<tr>
<td>A</td>
<td>AB</td>
<td>A</td>
<td>AB</td>
<td>Any Blood Group</td>
<td>AB</td>
<td>A, B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O concentrated SDP</td>
</tr>
<tr>
<td>A</td>
<td>O</td>
<td>O</td>
<td>A</td>
<td>Any Blood Group</td>
<td>A</td>
<td>*B, AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O concentrated SDP</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>O</td>
<td>AB</td>
<td>Any Blood Group</td>
<td>AB</td>
<td>*A, B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O concentrated SDP</td>
</tr>
<tr>
<td>B</td>
<td>AB</td>
<td>B</td>
<td>AB</td>
<td>Any Blood Group</td>
<td>AB</td>
<td>*A, B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O concentrated SDP</td>
</tr>
<tr>
<td>B</td>
<td>O</td>
<td>O</td>
<td>B</td>
<td>Any Blood Group</td>
<td>B</td>
<td>*A, AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O concentrated SDP</td>
</tr>
<tr>
<td>AB</td>
<td>O</td>
<td>O</td>
<td>AB</td>
<td>Any Blood Group</td>
<td>AB</td>
<td>A, B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O concentrated SDP</td>
</tr>
<tr>
<td>AB</td>
<td>A</td>
<td>A</td>
<td>AB</td>
<td>Any Blood Group</td>
<td>AB</td>
<td>*A, *B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O concentrated SDP</td>
</tr>
<tr>
<td>AB</td>
<td>B</td>
<td>B</td>
<td>AB</td>
<td>Any Blood Group</td>
<td>AB</td>
<td>*B, *A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O concentrated SDP</td>
</tr>
</tbody>
</table>